翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Ramanujan constant : ウィキペディア英語版
Heegner number
In number theory, a Heegner number is a square-free positive integer ''d'' such that the imaginary quadratic field Q() has class number 1. Equivalently, its ring of integers has unique factorization.〔

The determination of such numbers is a special case of the class number problem, and they underlie several striking results in number theory.
According to the Stark–Heegner theorem there are precisely nine Heegner numbers:
:, , , , , , , , .
This result was conjectured by Gauss and proven by Kurt Heegner in 1952.
==Euler's prime-generating polynomial==
Euler's prime-generating polynomial
:n^2 - n + 41, \,
which gives (distinct) primes for ''n'' = 1, ..., 40, is related to the Heegner number 163 = 4 · 41 − 1.
Euler's formula, with n taking the values 1,... 40 is equivalent to
:n^2 + n + 41, \,
with n taking the values 0,... 39, and Rabinowitz〔Rabinowitz, G. "Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratischen Zahlkörpern." Proc. Fifth Internat. Congress Math. (Cambridge) 1, 418–421, 1913.〕 proved that
:n^2 + n + p \,
gives primes for n=0,\dots,p-2 if and only if its discriminant 1-4p equals minus a Heegner number.
(Note that p-1 yields p^2, so p-2 is maximal.)
1, 2, and 3 are not of the required form, so the Heegner numbers that work are 7, 11, 19, 43, 67, 163, yielding prime generating functions of Euler's form for 2,3,5,11,17,41; these latter numbers are called ''lucky numbers of Euler'' by F. Le Lionnais.〔Le Lionnais, F. Les nombres remarquables. Paris: Hermann, pp. 88 and 144, 1983.〕

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Heegner number」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.